fabrication and electrochemical characterization of polyvinyl chloride based/chitosan-co- iron nickel oxide nanoparticles composite heterogeneous cation exchange membranes
Authors
abstract
in this research, polyvinylchloride based composite heterogeneous cation exchange membranes were prepared by the solution casting technique. chitosan-co-iron nickel oxide nanoparticles were utilized as membrane surface modifier to improve the membranes electrochemical properties. the effect of additive nanoparticle concentration in the modifier solution on the properties of composite membranes was studied. som images showed uniform particle distribution and relatively uniform surfaces for the membranes. results showed that transport number, selectivity and surface charge density were improved slightly by composite layer formation on the membrane surface. results showed that ionic permeability and flux was initially decreased by the cs-co-fe2nio4 layer introducing a membrane surface and increased again by a further increase in the iron-nickel oxide nanoparticles ratio from 2 to 4 wt% in the modifier solution. the pvc/cs-co-fe2nio4 nanoparticles composite membranes showed higher electrical conductivity compared to the unmodified membrane. the results are valuable for electro-membrane processes especially in electrodialysis for water recovery and waste water treatment.
similar resources
Fabrication and Electrochemical Characterization of Polyvinyl Chloride Based/Chitosan-co- Iron Nickel Oxide Nanoparticles Composite Heterogeneous Cation Exchange Membranes
In this research, polyvinylchloride based composite heterogeneous cation exchange membranes were prepared by the solution casting technique. Chitosan-co-iron nickel oxide nanoparticles were utilized as membrane surface modifier to improve the membranes electrochemical properties. The effect of additive nanoparticle concentration in the modifier solution on the properties of composite membranes ...
full textEnhancing Electrochemical Performance of Heterogeneous Cation Exchange Membranes by Using Super Activated Carbon Nanoparticles
Polyvinylchloride (PVC) based heterogeneous cation exchange membranes were prepared by the solution casting technique. The effect of super activated carbon nanoparticles concentration as filler additive in membrane matrix on ionic transfer behaviors of the membrane was studied. SOM images showed uniform particles distribution and relatively uniform surfaces for the membranes. The membrane water...
full textElectrodialysis Heterogeneous Anion Exchange Membranes Filled with TiO2 Nanoparticles: Membranes' Fabrication and Characterization
In the current research, polyvinylchloride based mixed matrix heterogeneous anion exchange membranes were prepared by a solution casting technique. Titanium dioxide nanoparticles were also utilized as inorganic filler additive in the membrane fabrication. The effect of TiO2 nanoparticles concentration in the casting solution on the membrane physico-chemical properties was studied. Membrane wate...
full textFabrication and Characterization of Novel Mixed Matrix Polyethersulfone Nanofiltration Membrane Modified by Iron-Nickel Oxide Nanoparticles
In this study, a mixed matrix polyethersulfone/iron-nickel oxide nanoparticle nanofiltration membrane was prepared by the solution casting technique. Polyvinylpyrrolidone was also used as a membrane pore former in membrane fabrication. The effect of iron-nickel oxide nanoparticles concentration in the casting solution on the membrane structure and performance was investigated. Scanning...
full textelectrodialysis heterogeneous anion exchange membranes filled with tio2 nanoparticles: membranes' fabrication and characterization
in the current research, polyvinylchloride based mixed matrix heterogeneous anion exchange membranes were prepared by a solution casting technique. titanium dioxide nanoparticles were also utilized as inorganic filler additive in the membrane fabrication. the effect of tio2 nanoparticles concentration in the casting solution on the membrane physico-chemical properties was studied. membrane wate...
full textThin Film Heterogeneous Ion Exchange Membranes Prepared by Interfacial Polymerization of PAA-co-Iron-Nickel Oxide Nanoparticles on Polyvinylchloride Based Substrate
In this research thin film heterogeneous cation exchange membrane was prepared by interfacial polymerization of polyacrylic acid-co-iron nickel oxide nanoparticle son PVC based substrate. Spectra analysis confirmed graft polymerization conclusively. The SEM images showed that polymerized layer covers the membranes by simple gel network entanglement. Results exhibited that membrane water content...
full textMy Resources
Save resource for easier access later
Journal title:
journal of membrane science and researchجلد ۲، شماره ۳، صفحات ۱۵۵-۱۶۰
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023